
Performance Analysis of Counting Sort Algorithm
using various Parallel Programming Models

M Rajasekhara Babu, M Khalid, Sachin Soni, Sunil Chowdari Babu, Mahesh

School of Computing Science and Engineering

VIT University, Vellore, India.

Abstract: The olden ways of programming does not utilize the
advantage of multi-core systems. In order to fully exploit these
multi-core machines, organizations need to redesign
applications so that the processors can treat them as multiple
threads of execution. Programmers need to hunt for optimum
spots in their codes to insert the parallel code, divide the work
approximately into equal parts that can be run simultaneously
and associate the precise times for the communication of the
threads. Redesigning applications to implement recognition of
the core speed of one core by another core in the die must also
be taken into grave consideration. As Jones points out, “While
that next-generation chip will have more CPUs, each
individual CPU will be no faster than the previous year’s
model. If we want our programs to run faster, we must learn
to write parallel programs”. Therefore, software developers
must take steps to modify the traditional way of writing
programs to make way for the implementation of
concurrency”. Parallelism is strategy for performing complex
and large programs faster. The large tasks can be decomposed
in to smaller tasks and execute simultaneously.

Keywords: Multi-core architecture, Parallel Programming,
Multiple Threads, OpenMP (API), MPI, Concurrent JAVA.

1. INTRODUCTION

Counting sort sorts the values over specific range. It counts
the number of occurrences of each value and then
calculates the number of values less than each value. Then
it places the values in sorted order based on the count of the
values. If there are X values less than Y then place the
place the Y value in Xth position. Let N be the number of
values in an array and K be the range of values present in
the array then the time complexity of this algorithm in an
average case and worst case is O (N+K). We can reduce the
execution time by identifying the concurrent code in the
algorithm and executing it parallel. We can examine this
concurrent code using Open MP, MPI and concurrent java.

2. COUNTING SORT

Algorithm for Counting Sort

Input: Size of the array
Output: Sorted array and its Execution time
Method:
Begin
1. Initialize array[N]
2. Min  array[0]
3. Max  array[0]
4. For i  1 to N

Do
5. If array[i] < min
6. Min  array[i]
7. If array[i] > max
8. Max  array[i]
end For
9. Range  max – min + 1
10. Initialize count[range+1]
11. For i  0 to N
Do
12. count[array[i] - min]  count[array[i] - min] +
1
end for
13. initialize z  0
14. for i  min to max
do
15. for j  0 to count[i - min]
do
16. array[z++]  i
end for
end for
17. for i  0 to N-1
do
18. print “array[i]”
end for
End

In this algorithm first we determine the minimum and
maximum values of array in order to find the range of an
array. Using that range value we initialize another array
count of size range+1 to zero. We calculate the elements of
count array by considering the actual array elements,
suppose the value of array is 4 then the 5th location value
of count array is 1, like this we find all values of count
array. Then we calculate number of elements present before
each value of count array and save the count in the count
array itself. With the help of count array rearrange the
original array elements. It becomes sorted list. So such a
way no where we have used nested for loop so advantage
of this algorithm is it’s time complexity is θ(n), where n is
no of element of the array, but as far as concern the
disadvantage of this algorithm is more space complex and
if any one element that value is max size it have to create
that much long length of array, so it will perform less if
input stream in following manner,

2 4 5 989 7 8 9 0
For this type of array we have to maintain a long size of
array which index 0 to 989.

M. Rajasekhara Babu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2284-2287

2284

3. FLOW CHART:

4. METHODOLOGY USED FOR PARALLELIZE WITH

DIFFERENT PARALLEL PROGRAMMING MODELS

OpenMP:

 As the algorithm implementation shows the main
dominating and time consuming for loop is following

For (i=0;i<size;i++)

{

Count [array1 [i]-min] ++;

}

To parallelize this for loop we have two mythology in
OpenMP following one with partition in to SECTIONS and
second one parallelize the FOR loop.

Parallelizing using sections

 If we are taking in to the SECTIONS then we have core 2
due processor and we can make at max 2 sections to make
the result efficiently. So make a partition in the FOR loop

also because both of the cores will take care of half of the
count [array[i]].

 Following code fragment used

 #pragma omp parallel sections{

#pragma omp section{

For (i=0;i<size/2;i++)

Count [array1[i]-min]++;}

#pragma omp section{

For (i=size/2; i<size; i++)

Count [array1 [i]-min] ++;}

 }

Parallelize with parallel for

In this inter loop dependency when calculating the count []
elements so reduction () DATA SHARING ATTRIBUTE
CLAUSE of FOR loop is used, in following manner

#pragma omp parallel for reduction (+:count) {

For (i=0;i<size;i++)

Count [array[i]-min]= Count [array[i]-min]+1;}

MPI:

If we compare with OpenMP here processes will execute of
each of the processor one processes. So if we are
comparing with core2due processor so we have taken only
two processes with 2 cores. So we have used counting sort
function for each of the processes after partition the data or
array then after one loop Marge (agglomeration) both of
output array. The following manner used

If (id==0){

count_sort(a*,0,size/2);

}

 If(id==1){

count_sort(a*,size/2,size);

}

If (id==0){

agglomeration_marge(a*,b*,0,size/2,size);

}

Implementation with concurrent JAVA:

Same as OpenMP JAVA parallelism works on threads
executions then a pool of threads is created in JAVA and as

M. Rajasekhara Babu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2284-2287

2285

a parameter we have passed 2 because for getting a
efficient performance we have core2 due processors.

Executor pool=Executors.newFixedThreadPool(2);

 This is main dominating for creating treads and executed
the function count_sort().

5. RESULTS:

 OpenMP :
Array size Serial program

readings
Parallel program

readings
10 0.000011 0.000008
100 0.000017 0.000011

1000 0.000089 0.000059
Table: 5.1 OpenMP readings

Fig: 5.1 OpenMP Graph

So at the beginning the difference is not that much
significant in the graph and when the values of array taken
higher then significant difference is observed, and speed up
is in band of 1.55 to 1.35 which is more accurate.

 Fig 5.2 Open MP Speedup Graph

MPI:
 Table 5.2 MPI readings

0

0.002

0.004

0.006

0.008

0.01

0.012

10 100 1000 10000 100000E
xe
cu
tio
n
ti
m
e
in
 s
ec
o
nd
s

no. of elem ent ta ken

MPI im plim enta tion seria l Vs pa ra llel
(2 processor/processes u sed)

PARALLEL

SERIAL

 Fig: 5.3 MPI Graph

So at the beginning the difference is not that much
significant in the graph and when the values of array taken
higher then significant difference is observed, and speed up
is in band of 0.80 to 1.80 which is more accurate

SPEEDUP

 Fig 5.4 MPI Speedup Graph

Concurrent Java:

 Table: 5.3 Concurrent java readings
Array size Serial program

execution time
Parallel program
execution time

100 3.79 19.54
500 3.8 21.81

1000 20.64 23.47
5000 30 28.42

10000 103 28.87
15000 236 36.86
50000 320 48.85

Fig: 5.5 Concurrent java graph

Array size Serial program
readings

Parallel program
readings

10 0.000041 0.00006198
100 0.0006589 0.00007286
1000 0.0001358 0.0001023

10000 0.0007799 0.0004708
100000 0.00725 0.0041

M. Rajasekhara Babu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2284-2287

2286

So at the beginning the difference is not that much
significant in the graph and when the values of array taken
higher then significant difference is observed, and speed up
is discrete.

SPEEDUP

Fig 5.6 Concurrent Java Speedup Graph

6. CONCLUSION

 As this report is compared the counting sort with
taken different values. In MPI we have 72 core cluster but
as comparing result with core2due architecture we have
taken only 2 processor / processers. With comparing the
result OpenMP is performing well rather than MPI and
concurrent java, but for more illustrating MPI and OpenMP
for 2 core are performing almost same executing time while
concurrent JAVA is getting higher execution time.

REFERENCES

1. www.cse.iitk.ac.in/teaching/courses/CS210.html.
2. Ratnayake, K.; Amer, A.;Concordia Univ., Montreal “An FPGA

Architecture of counting-Sorting on a Large Data Volume :
Application to Video Signals” Issue 2007 On page(s): 431 – 436.

3 .www.openMP.org
4. www.llnl.gov/computing/tutorials/mpi
5. www. llnl.gov/computing/tutorials/openMP.
6. Podcast from JavaPolis - 'Java Concurrency Utilities in JDK 5.0 by

Brian Goetz.
7. Java Concurrency Tutorial by Jakob Jenkov.
8. Thread Safe Java Programming by Vadym Ustymenko.
9. Book “Parallel programming in C with MPI and OpenMP” by Michael

J. Quinn.

M. Rajasekhara Babu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2284-2287

2287

